“Neil performed a knee replacement for me on 26th November 2018. So just over a year ago. I am completely satisfied with his work and expertise. I can now do all the activities that were so painful before the Surgery. Swimming, Golf, Cycling. I would thoroughly recommend Neil and his team at the... Read More

“Amazing result. I had surgery in the afternoon and walked out without pain late afternoon. Two weeks later the stitches are out, swelling reduced and normal knee function restored. A master craftsman and highly recommended.”

“Excellent service - always on time for the appointment. Problem well explained and treatment excellent during the operation and time spent in the hospital. Follow up treatment with consultant and physiotherapists also excellent.”

“Having your knee replaced is a very painful procedure but I've worked hard at getting back to normal and I do feel that the fabulous surgery was an integral part of my speedy recovery. Mr. Bradbury is a super surgeon! He does an amazing job.”

“Mr. Bradbury is an excellent surgeon. He has now fixed both of my knees. The whole hospital experience is amazing and will always be my first choice for any future surgical procedures.”

“Just thought I would let you know that I had a very successful weeks skiing in Verbier and got back last weekend. Weather fantastic and knee held up very well. Many, many thanks.”

“I couldn't ask for a better surgeon than Neil, he has honestly changed my life in 1 year and I can't thank him enough.”

“I would sincerely like to thank you and your team for the work you did on my knee after the x-ray revealed a 'nasty' break. Your expertise has given me back the use of this leg and I can now walk unaided for half a mile or more. The previous knee operation has also been a complete success.”

“The process from start to finish was smooth and efficient. I always knew where I was in the process, what to expect and when. A thoroughly professional service with a smile.”

“Pre-op information first class. Post-op conditions also first class. Very successful operation.”

Pioneering knee surgery


Pioneering knee surgery


Neil Bradbury is working with some of the most technologically advanced companies in the world to develop new techniques and innovative ways of treating knee conditions. He is one of only a few orthopaedic surgeons in Europe to offer techniques which restore the natural biological knee.

Personalised knee implants allow noticeably more bone preservation than traditional knee replacement options. This preserves bone stock for potential future treatments.


Read more about our latest technologies

An increase in sporting related injuries to the knee has resulted in rapid technological advances in the management of knee ligament and meniscal injuries, resulting in an earlier return to functionality and rehabilitation.

The knee specialists use innovative surgical techniques for the management of arthritis such as half or Uni-compartment knee replacement, patello-femoral (knee cap joint) replacement, osteotomy as well as performing total knee replacement.

Read more about our latest technologies


Latest technology


Mako robotic-arm assisted technology

Some of the country’s leading orthopaedic surgeons are now using advanced robotic-arm assisted technology to provide even greater accuracy for patients during surgery.

The state-of-the-art technology generates a personalised surgical plan bespoke to a patient’s unique anatomy ensuring precision accuracy for hip and knee replacements.

Just over 500 Stryker Mako robots exist globally, over 50 of these are now placed in Europe but the vast majority are in America.

Designed by Stryker, one of the world's leading medical technology companies, Mako robotic-arm assisted technology provides patients with a more predictable surgical experience.

What is Mako robotic-assisted surgery?

The treatment begins with a CT scan of your joint which is used to generate a 3D model. The Mako technology then uses the virtual 3D model to create a personalised surgical plan based on your anatomy.

The robotic-arm doesn’t perform surgery, nor can it make decisions on its own or move without the surgeon guiding it. Mako technology assists the surgeon during your joint replacement by guiding the surgery, within a pre-defined area, whilst allowing the surgeon to optimise implant alignment. This results in less than 1mm precision accuracy in the placement and alignment of your knee implant.

During the operation your surgeon moves the joint through a full range of motion, capturing more data during joint motion and picking up tensions in the soft tissues. This allows your surgeon to adjust your personalised surgical plan as it takes into account the complex interaction of the joint surfaces on the bones and ligaments. The surgeon then guides the robotic arm, within the predetermined areas of the joint, to place the prosthesis in the precise position.

Older technologies have been available that help to plan the position of a prosthesis, however, Mako robotic-arm assisted technology combines enhanced planning, dynamic balancing (the ability to change the plan if required mid-procedure) and precision bone cuts - which are all helping to improve outcomes such as early function and reduce post-operative pain.

The benefits of Mako technology explained

Alignment of the knee implant and stability following surgery are two key factors influencing outcomes following surgery.

In clinical studies, Mako technology demonstrated very accurate placement of the implants, in hip and knee surgery, in accordance with the surgical plan.

The superficial and unintentional damage to surrounding tissue during surgery leads to bleeding, swelling and pain. Protection of the soft tissues around the joint is an important factor when performing the surgery. Mako robotic-arm assisted surgery protects more of the soft tissues and provides more accurate bone cuts**.

Infection, instability, stiffness, and misalignment can lead to dissatisfaction with the outcome of the hip or knee replacement procedure resulting in early revision surgery*.

With Mako, robotic-arm assisted surgery the patient benefits from less pain, better and quicker recovery and excellent long-term outcomes following surgery with these implants.



**Iatrogenic Bone and Soft Tissue Trauma in Robotic-Arm Assisted Total Knee Arthroplasty Compared With Conventional Jig-Based Total Knee Arthroplasty: A Prospective Cohort Study and Validation of a New Classification System. Kayani B, et al. J Arthroplasty. 2018. J Arthroplasty. 2018 Aug;33(8):2496-2501. doi: 10.1016/j.arth.2018.03.042. Epub 2018 Mar 27.

Read more »

Custom-made Knees

Each implant is created specifically for you and exactly mirrors the surface contours of your knee, providing bone preservation. The implants also provides an anatomic fit with less bone cutting than traditional treatments.

Patients with unicompartmental disease are able to preserve their knee for future treatments and may also experience faster recovery time and reduced post-operative pain than with traditional total knee replacement. In addition, the unique instrumentation can improve alignment and provide a more natural feel to the knee, which can reduce implant wear and extend the life of the knee joint.

Use the link below to find out more about personalised knee implants.

Personalised knee implants

Read more »

Articular Cartilage Replacement (grafting)

The Chondrotissue Graft is the latest development in articular cartilage repair and or replacement surgery.
Damage to articular cartilage or damage to both the cartilage and the underlying bone does not repair itself spontaneously and results in joint pain and poor function. Thinning and roughening of the articular cartilage can progress to severe wear and eventually patches of bare bone rubbing on bare bone in the knee leading to arthritis.

Chondrostissue grafts

Read more »

Intra-Articular Protein Therapy

For osteoarthritis sufferers a single protein injection, harvested from a patient’s blood could replace the need for knee surgery.

nSTRIDE Autologous Protein Solution (APS) is a groundbreaking therapy designed to treat pain and slow the progression of cartilage degradation which can lead to destruction of the knee.

The new procedure involves the extraction of blood from the patient, separation in a centrifuge to obtain a concentrated suspension of platelets via plasmapheresis, followed by injection of part of the fluid into the knee.

During this process the blood undergoes a two-stage centrifugation process to separate the solid and liquid components. Blood is extracted from the patient’s vein, mixed with an anticoagulant and centrifuged at high speed for approximately 15 minutes, causing the blood to separate into three layers: a yellow blood plasma; a red blood cell concentration; and a ‘platelet-rich plasma’, a solution comprising platelet cells and some white blood cells.

The initial phase separates the plasma and platelets from the erythrocytes and leukocytes. The second stage uses a hard spin to concentrate the platelets further into platelet rich and poor plasma components. The platelet-rich plasma is extracted and centrifuged again for an additional two minutes until surgeons end up with a 3ml protein liquid. The final platelet rich plasma, known as autologous protein solution is then injected into the knee joint space.

The final product contains concentrated white blood cells, platelets, and plasma proteins in a small volume of plasma. The output is approximately a 2 to 3 cc anti-inflammatory solution.

The proposed nSTRIDE Autologous Protein Solution (APS) mechanism of action is a process of reducing osteoarthritis-related upregulated inflammatory cytokines by introducing antagonistic cytokines, which inhibit the inflammatory cytokine activity. nSTRIDE Autologous Protein Solution (APS) has been shown to reduce production of proteins associated with osteoarthritic inflammation and pain responses in vitro.

There is growing evidence to support its use for select indications in osteoarthritis (Kellgren-Lawrence Grade 2-3).  Clinical studies have demonstrated the effectiveness of one single injection. Studies suggest one injection can last at least 12 months, with new evidence showing evidence upto 2 years post injection.

Read the latest reviews on nSTRIDE Autologous Protein Solution for the treatment of knee osteoarthritis.



Read more »

Meniscal Scaffold

There are two shock absorbers in the normal knee each called a meniscus. They are frequently injured or torn and tend not to heal because only the outer edge has a blood supply.

Some tears can be repaired by stitching the meniscus so that it can heal. The majority of meniscal tears are removed with an arthroscopy (keyhole surgery). If the amount removed is small most patients have no further problem but in patients where a large part of the meniscus is lost there is a risk of developing pain and early arthritis in the joint.

One solution for some patients is insertion of a meniscal scaffold. This is a procedure where a meniscus like scaffold is sewn into place with the aim of allowing the body’s tissue to grow into the scaffold and produce a new meniscus like shock absorber. It is a relatively new technique which has shown promising results.

There are two most frequently used scaffolds, the CMI implant and the Actifit implant. We offer both types of surgery.

Rehabilitation following this type of procedure is lengthy and patients require several weeks off work and months off sport.

Read more »

Meniscal Allograft

For patients in which all of a meniscus is lost and a meniscal scaffold is not suitable, it is possible to insert a meniscal allograft.

An allograft is a human meniscus from a donor in much the same way that patients can have corneal or kidney transplants but without the need to prevent rejection with on-going drugs.

The patient’s knee is sized by X-ray and MRI scan and a matching meniscus is ordered for implantation. There are a number of sources for this type of implant.

This is complex surgery but can be performed using a keyhole technique. It is a relatively new technique and tends to be reserved for younger people in whom other treatments have failed.

Rehabilitation following this type of procedure is lengthy and patients require several weeks off work and sport.

Read more »

Meet the team